
Vearch
Release 0.1

Jun 30, 2023

Quick Start

1 Summary 1
1.1 Overall Architecture . 2
1.2 General Introduction . 2
1.3 System Features . 3

2 Installation and Use 5
2.1 Compile . 5
2.2 Deploy . 6

3 Cluster Monitoring 9
3.1 Cluster Status . 9
3.2 Health Status . 9
3.3 Port Status . 9

4 Database Operation 11
4.1 List Database . 11
4.2 Create Database . 11
4.3 View Database . 11
4.4 Delete Database . 11
4.5 View Database Space . 12

5 Space Operation 13
5.1 Create Space . 13
5.2 View Space . 17
5.3 Delete Space . 17
5.4 Modify cache size . 17
5.5 Get cache size . 17

6 Doc Opeartion 19
6.1 Single Insertion . 19
6.2 Batch insertion . 20
6.3 Update . 20
6.4 Delete . 21
6.5 Search . 21
6.6 ID query . 23
6.7 Batch query . 24
6.8 Multi vector query . 24

i

7 Effect Evaluation 25

8 Cluster experiments 29

9 Common Problem 31

ii

CHAPTER 1

Summary

Vearch is a scalable distributed system for efficient similarity search of deep learning vectors.

1

Vearch, Release 0.1

1.1 Overall Architecture

Data Model: space, documents, vectors, scalars

Components: MasterRoutermPartitionServer

Master: Responsible for schema mananagement, cluster-level metadata, and resource coordination.

Router: Provides RESTful API: create , delete search and update ; request routing, and result merging.

PartitionServer(PS): Hosts document partitions with raft-based replication. Gamma is the core vector search engine.
It provides the ability of storing, indexing and retrieving the vectors and scalars.

1.2 General Introduction

1. One document one vector.

2. One document multiple vectors.

3. One document has multiple data sources and vectors.

2 Chapter 1. Summary

Vearch, Release 0.1

4. Numerical field filtration

5. Batch operations to support addition and search.

1.3 System Features

1. Gamma engine implemented by C++ guarantees fast detection of vectors.

2. Supporting Interior Product and L2 Method to Calculate Vector Distance.

3. Supporting memory and disk data storage, supporting super-large data scale.

4. Data multi copy storage based on raft protocol.

1.3. System Features 3

Vearch, Release 0.1

4 Chapter 1. Summary

CHAPTER 2

Installation and Use

2.1 Compile

Environmental dependence

1. CentOS, Ubuntu and Mac OS are all OK (recommend CentOS >= 7.2).

2. go >= 1.11.2 required.

3. gcc >= 5 required.

4. cmake >= 3.17 required.

5. OpenBLAS.

6. tbbIn CentOS it can be installed by yum. Such as: yum install tbb-devel.x86_64.

7. RocksDB == 6.2.2 (optional). You don’t need to install it manually, the script installs it automatically. But you
need to manually install the dependencies of rocksdb. Please refer to the installation method: https://github.
com/facebook/rocksdb/blob/master/INSTALL.md

8. zfp == v0.5.5 (optional), You don’t need to install it manually, the script installs it automatically.

9. CUDA >= 9.0, if you want GPU support.

Compile

• Enter the GOPATH directory, cd $GOPATH/src mkdir -p github.com/vearch cd github.com/vearch

• Download the source code: git clone https://github.com/vearch/vearch.git ($vearch denotes the absolute path of
vearch code)

• Download the source code of subprojects gamma: cd vearch git submodule update –recursive

• To add GPU Index support: change BUILD_WITH_GPU from “off” to “on” in $vearch/engine/CMakeLists.txt

• Compile vearch and gamma

1. cd build

2. sh build.sh

5

https://github.com/facebook/rocksdb/blob/master/INSTALL.md
https://github.com/facebook/rocksdb/blob/master/INSTALL.md
https://github.com/vearch/vearch.git

Vearch, Release 0.1

generate vearchfile compile success

2.2 Deploy

Before run vearch, you shuld set LD_LIBRARY_PATH, Ensure that system can find gamma dynamic libraries. The
gamma dynamic library that has been compiled is in the $vearch/build/gamma_build folder.

Local Model:

• generate configuration file conf.toml

[global]
the name will validate join cluster by same name
name = "vearch"
you data save to disk path ,If you are in a production environment, You'd

→˓better set absolute paths
data = ["datas/"]
log path , If you are in a production environment, You'd better set absolute

→˓paths
log = "logs/"
default log type for any model
level = "debug"
master <-> ps <-> router will use this key to send or receive data
signkey = "vearch"
skip_auth = true

if you are master you'd better set all config for router and ps and router and ps
→˓use default config it so cool
[[masters]]

name machine name for cluster
name = "m1"
ip or domain
address = "127.0.0.1"
api port for http server
api_port = 8817
port for etcd server
etcd_port = 2378
listen_peer_urls List of comma separated URLs to listen on for peer traffic.
advertise_peer_urls List of this member's peer URLs to advertise to the rest of

→˓the cluster. The URLs needed to be a comma-separated list.
etcd_peer_port = 2390
List of this member's client URLs to advertise to the public.
The URLs needed to be a comma-separated list.
advertise_client_urls AND listen_client_urls
etcd_client_port = 2370

[router]
port for server
port = 9001

[ps]
port for server
rpc_port = 8081
raft config begin
raft_heartbeat_port = 8898
raft_replicate_port = 8899

(continues on next page)

6 Chapter 2. Installation and Use

Vearch, Release 0.1

(continued from previous page)

heartbeat-interval = 200 #ms
raft_retain_logs = 10000
raft_replica_concurrency = 1
raft_snap_concurrency = 1

• start

./vearch -conf conf.toml all

Cluster Model:

• vearch has three module: ps(PartitionServer) , master, router, run ./vearch -f conf.toml ps/router/master start
ps/router/master module

Now we have five machine, two master, two ps and one router

• master

– 192.168.1.1

– 192.168.1.2

• ps

– 192.168.1.3

– 192.168.1.4

• router

– 192.168.1.5

[global]
name = "vearch"
data = ["datas/"]
log = "logs/"
level = "info"
signkey = "vearch"
skip_auth = true

if you are master, you'd better set all config for routerps and router, ps use
→˓default config it so cool
[[masters]]

name = "m1"
address = "192.168.1.1"
api_port = 8817
etcd_port = 2378
etcd_peer_port = 2390
etcd_client_port = 2370

[[masters]]
name = "m2"
address = "192.168.1.2"
api_port = 8817
etcd_port = 2378
etcd_peer_port = 2390
etcd_client_port = 2370

[router]
port = 9001
skip_auth = true

[ps]

(continues on next page)

2.2. Deploy 7

Vearch, Release 0.1

(continued from previous page)

rpc_port = 8081
raft_heartbeat_port = 8898
raft_replicate_port = 8899
heartbeat-interval = 200 #ms
raft_retain_logs = 10000
raft_replica_concurrency = 1
raft_snap_concurrency = 1

• on 192.168.1.1 , 192.168.1.2 run master

./vearch -conf config.toml master

• on 192.168.1.3 , 192.168.1.4 run ps

./vearch -conf config.toml ps

• on 192.168.1.5 run router

./vearch -conf config.toml router

8 Chapter 2. Installation and Use

CHAPTER 3

Cluster Monitoring

http://master_server is the master service.

3.1 Cluster Status

curl -XGET http://master_server/_cluster/stats

3.2 Health Status

curl -XGET http://master_server/_cluster/health

3.3 Port Status

curl -XGET http://master_server/list/server

9

http://master_server

Vearch, Release 0.1

10 Chapter 3. Cluster Monitoring

CHAPTER 4

Database Operation

http://master_server is the master service, $db_name is the name of the created database.

4.1 List Database

curl -XGET http://master_server/list/db

4.2 Create Database

curl -XPUT -H "content-type:application/json" -d '{
"name": "db_name"

}' http://master_server/db/_create

4.3 View Database

curl -XGET http://master_server/db/$db_name

4.4 Delete Database

curl -XDELETE http://master_server/db/$db_name

Cannot delete if there is a table space under the datebase.

11

http://master_server

Vearch, Release 0.1

4.5 View Database Space

curl -XGET http://master_server/list/space?db=$db_name

12 Chapter 4. Database Operation

CHAPTER 5

Space Operation

http://master_server is the master service, $db_name is the name of the created database, $space_name is the name of
the created tablespace.

5.1 Create Space

curl -XPUT -H "content-type: application/json" -d'
{

"name": "space1",
"partition_num": 1,
"replica_num": 1,
"engine": {

"index_size": 70000,
"id_type": "String",
"retrieval_type": "IVFPQ",
"retrieval_param": {

"ncentroids": 256,
"nsubvector": 32

}
},
"properties": {

"field1": {
"type": "keyword"

},
"field2": {

"type": "integer"
},
"field3": {

"type": "float",
"index": true

},
"field4": {

"type": "string",

(continues on next page)

13

http://master_server

Vearch, Release 0.1

(continued from previous page)

"array": true,
"index": true

},
"field5": {

"type": "integer",
"index": true

},
"field6": {

"type": "vector",
"dimension": 128

},
"field7": {

"type": "vector",
"dimension": 256,
"format": "normalization",
"store_type": "RocksDB",
"store_param": {

"cache_size": 2048,
"compress": {"rate":16}

}
}

}
}
' http://master_server/space/$db_name/_create

Parameter description:

field name field description field type must remarks
name space name string true
partition_num partition number int true
replica_num replica number int true
engine engine config json true
properties schema config json true define space field

1Space name not be empty, do not start with numbers or underscores, try not to use special characters, etc.

2partition_num: Specify the number of tablespace data fragments. Different fragments can be distributed on different
machines to avoid the resource limitation of a single machine.

3replica_num: The number of copies is recommended to be set to 3, which means that each piece of data has two
backups to ensure high availability of data.

engine config:

field name field description field type must remarks
index_size slice index threshold int false
id_type Unique primary key type string false
retrieval_type search model string true
retrieval_param model config json false

1. index_size: Specify the number of records in each partition to start index creation. If not specified, no index
will be created.

2. id_type Specify primary key type, can be string or long.

3. retrieval_type search model, now support IVFPQHNSWGPUIVFFLATBINARYIVFFLAT.

14 Chapter 5. Space Operation

Vearch, Release 0.1

IVFPQ:

field name field description field type must remarks
ncentroids number of buckets for indexing int false default 2048
nsubvector PQ disassembler vector size int false default 64, must be a multiple of 4

"retrieval_type": "IVFPQ",
"retrieval_param": {

"ncentroids": 2048,
"nsubvector": 64

}

HNSW:

field name field description field type must remarks
nlinks Number of node neighbors int false default 32
efConstruction Composition traversal depth int false default 40

"retrieval_type": "HNSW",
"retrieval_param": {

"nlinks": 32,
"efConstruction": 40

}

Note: 1. Vector storage only supports MemoryOnly
2. No training is required to create an index, and the index_size value can be

→˓greater than 0

GPU (Compiled version for GPU):

field name field description field type must remarks
ncentroids number of buckets for indexing int false default 2048
nsubvector PQ disassembler vector size int false default 64, must be a multiple of 4

"retrieval_type": "GPU",
"retrieval_param": {

"ncentroids": 2048,
"nsubvector": 64

}

IVFFLAT:

field name field description field type must remarks
ncentroids number of buckets for indexing int default default 256

"retrieval_type": "IVFFLAT",
"retrieval_param": {

"ncentroids": 256
}

Note: 1. The vector storage method only supports RocksDB

5.1. Create Space 15

Vearch, Release 0.1

BINARYIVF:

field name field description field type must remarks
ncentroids number of buckets for indexing int default default 256

"retrieval_type": "BINARYIVF",
"retrieval_param": {

"ncentroids": 256
}

Note: 1. The vector length is a multiple of 8

properties config:

1. There are four types (that is, the value of type) supported by the field defined by the table space structure:
keyword, integer, float, vector (keyword is equivalent to string).

2. The keyword type fields support index and array attributes. Index defines whether to create an index, and array
specifies whether to allow multiple values.

3. Integer, float type fields support the index attribute, and the fields with index set to true support the use of
numeric range filtering queries.

4. Vector type fields are feature fields. Multiple feature fields are supported in a table space. The attributes
supported by vector type fields are as follows:

field
name

field description field
type

must remarks

dimension feature dimension int true Value is an integral multiple of the above nsubvector
value

store_type feature storage type string false support Mmap and RocksDB, default Mmap
store_param storage parameter set-

tings
json false set the memory size of data

model_id feature plug-in model string false Specify when using the feature plug-in service

5. dimension: define that type is the field of vector, and specify the dimension size of the feature.

6. store_type: raw vector storage type, there are the following three options

“MemoryOnly”: Vectors are stored in the memory, and the amount of stored vectors is limited by the memory. It is
suitable for scenarios where the amount of vectors on a single machine is not large (10 millions) and high performance
requirements

“RocksDB”: Vectors are stored in RockDB (disk), and the amount of stored vectors is limited by the size of the
disk. It is suitable for scenarios where the amount of vectors on a single machine is huge (above 100 millions) and
performance requirements are not high.

“Mmap”: The original vector is stored in a disk file. Use the cache to improve performance. The amount of storage
is limited by disk size. Applicable to the single machine data volume is huge (over 100 million), the performance
requirements are not high scene.

7. store_param: storage parameters of different store_type, it contains the following two sub-parameters

cache_size: interge type, the unit is M bytes, the default is 1024. When store_type=”RocksDB”, it indicates the read
buffer size of RocksDB. The larger the value, the better the performance of reading vector. Generally set 1024, 2048,
4096 and 6144; when store_type =”Mmap”, represents the size of read buffer, generally 512, 1024, 2048 and 4096,
can be set according to the actual application scenario; store_type =”MemoryOnly”, cache_size is not in effect.

compress: set to {“rate”:16} to compress by 50%;Default does not compress.

16 Chapter 5. Space Operation

Vearch, Release 0.1

Scalar Index Gamma engine supports scalar index, provides the filtering function for scalar data, the opening method
refers to the 2nd and 3rd in the “properties config”, and the retrieval method refers to the “filter json structure elucida-
tion” in the “Search”

5.2 View Space

curl -XGET http://master_server/space/$db_name/$space_name

5.3 Delete Space

curl -XDELETE http://master_server/space/$db_name/$space_name

5.4 Modify cache size

curl -H "content-type: application/json" -XPOST -d'
{

"cache_models": [
{

"name": "table",
"cache_size": 1024,

},
{

"name": "string",
"cache_size": 1024,

},
{

"name": "field7",
"cache_size": 1024,

}
]

}
' http://master_server/config/$db_name/$space_name

1. table cache size: Represents the cache size of all fixed-length scalar fields (integer, long, float, double). The
default value is 512M.

2. string cache size: Represents the cache size of all variable-length scalar fields (string). The default value is
512M.

3. store_type is the vector field of Mmap that can modify the cache size.

5.5 Get cache size

curl -XGET http://master_server/config/$db_name/$space_name

1. store_type is the vector field of Mmap to view the cache size. Other storage methods for vector fields do not
support viewing the cache size.

5.2. View Space 17

Vearch, Release 0.1

18 Chapter 5. Space Operation

CHAPTER 6

Doc Opeartion

http://router_server is the router service, $db_name is the name of the created database, $space_name is the name of
the created space, $ID is the unique ID of the data record.

6.1 Single Insertion

Insert without a unique ID

curl -XPOST -H "content-type: application/json" -d'
{

"field1": "value1",
"field2": "value2",
"field3": {

"feature": [0.1, 0.2]
}

}
' http://router_server/$db_name/$space_name

field1 and field2 are scalar field and field3 is feature field. All field names, value types, and table structures are
consistent

The return value format is as follows:

{
"_index": "db1",
"_type": "space1",
"_id": "AW5J1lNmJG6WbbCkHrFW",
"status": 201,
"_version": 1,
"_shards": {

"total": 0,
"successful": 1,
"failed": 0

(continues on next page)

19

http://router_server

Vearch, Release 0.1

(continued from previous page)

},
"result": "created",
"_seq_no": 1,
"_primary_term": 1

}

Among them, _index is the name of the database, _type is the name of the tablespace. ID is the unique identification
of the record generated by the server, which can be specified by the user. The unique identification needs to be used
for data modification and deletion.

Specify a unique ID when inserting

curl -XPOST -H "content-type: application/json" -d'
{

"field1": "value1",
"field2": "value2",
"field3": {

"feature": [0.1, 0.2]
}

}

' http://router_server/$db_name/$space_name/$id

$id is the unique ID generated by the server with the specified value when inserting data. The $id value cannot use
special characters such as URL path. Overwrite if the unique record already exists in the library.

6.2 Batch insertion

curl -H "content-type: application/json" -XPOST -d'
{"index": {"_id": "v1"}}\n
{"field1": "value", "field2": {"feature": []}}\n
{"index": {"_id": "v2"}}\n
{"field1": "value", "field2": {"feature": []}}\n
' http://router_server/$db_name/$space_name/_bulk

like json format, {“index”: {“_id”: “v1”}} specify the record id, {“field1”: “value”, “field2”: {“feature”: []}} specify
inserted dataevery line is json string.

6.3 Update

Unique ID must be specified when updating

curl -H "content-type: application/json" -XPOST -d'
{

"doc": {
"field1": 32

}
}
' http://router_server/$db_name/$space_name/$id/_update

The unique $id is specified in the request path. The field1 is the field to be modified. The modification of the vector
field uses the method of inserting the specified $id to update the data coverage.

20 Chapter 6. Doc Opeartion

Vearch, Release 0.1

6.4 Delete

Delete data according to unique ID

curl -XDELETE http://router_server/$db_name/$space_name/$id

Delete data according to query filtering results

curl -H "content-type: application/json" -XPOST -d'
{

"query": {
"sum": [{}]

}
}
' http://router_server/$db_name/$space_name/_delete_by_query

Batch delete according to ID

curl -H "content-type: application/json" -XPOST -d'
{"delete": {"_id": "v1"}}
{"delete": {"_id": "v2"}}
{"delete": {"_id": "v3"}}
' http://router_server/$db_name/$space_name/_bulk

See the following for query syntax

6.5 Search

Query example

curl -H "content-type: application/json" -XPOST -d'
{

"query": {
"sum": [{

"field": "field_name",
"feature": [0.1, 0.2, 0.3, 0.4, 0.5],
"min_score": 0.9,
"boost": 0.5

}],
"filter": [{

"range": {
"field_name": {

"gte": 160,
"lte": 180

}
}

},
{

"term": {
"field_name": ["100", "200", "300"],
"operator": "or"

}
}]

},
"direct_search_type": 0,

(continues on next page)

6.4. Delete 21

Vearch, Release 0.1

(continued from previous page)

"quick": false,
"vector_value": false,
"online_log_level": "debug",
"size": 10

}
' http://router_server/$db_name/$space_name/_search

The overall JSON structure of query parameters is as follows:

{
"query": {

"sum": [],
"filter": []

},
"direct_search_type": 0,
"quick": false,
"vector_value": false,
"online_log_level": "debug",
"size": 10

}

Parameter Description:

field name field type must remarks
sum json array true query feature
filter json array false query criteria filtering: numeric filtering + label filtering
direct_search_type int false default 0
quick bool false default false
vector_value bool false default false
online_log_level string false set debug, Turn on Printing debug log
size int false number of returned results

• sum json structure elucidation:

"sum": [{
"field": "field_name",
"feature": [0.1, 0.2, 0.3, 0.4, 0.5],
"min_score": 0.9,
"boost": 0.5

}]

(1) sum: Support multiple (including multiple feature fields when defining table structure correspondingly).

(2) field: Specifies the name of the feature field when the table is created.

(3) feature: Transfer feature, dimension must be the same when defining table structure

(4) min_score: Specify the minimum score of the returned result, the similarity between the two vector calculation
results is between 0-1, min_score can specify the minimum score of the returned result, and max_score can
specify the maximum score. For example, set “min_score”: 0.8, “max_score”: 0.95 to filter the result of 0.8 <=
score <= 0.95. At the same time, another way of score filtering is to use the combination of “symbol”: “>=”,
“value”: 0.9. The value types supported by symbol include: >, >=, < and <= four kinds, and the values of value,
min_score and max_score are between 0 and 1.

(5) boost: Specify the weight of similarity. For example, if the similarity score of two vectors is 0.7 and boost is set
to 0.5, the returned result will multiply the score 0.7 * 0.5, which is 0.35.

22 Chapter 6. Doc Opeartion

Vearch, Release 0.1

• filter json structure elucidation:

"filter": [
{

"range": {
"field_name": {

"gte": 160,
"lte": 180

}
}

},
{

"term": {
"field_name": ["100", "200", "300"],
"operator": "or"

}
}

]

(1) filter: Multiple conditions are supported. Multiple conditions are intersecting.

(2) range: Specify to use the numeric field integer / float filtering, the file name is the numeric field name, gte and
lte specify the range, lte is less than or equal to, gte is greater than or equal to, if equivalent filtering is used, lte
and gte settings are the same value. The above example shows that the query field_name field is greater than or
equal to 160 but less than or equal to 180.

(3) term: With label filtering, field_name is a defined label field, which allows multiple value filtering. You can
intersect “operator”: “or”, merge: “operator”: “and”. The above example indicates that the query field name
segment value is “100”, “200” or “300”.

• direct_search_type: Specify the query type. 0 means to use index if the feature has been created, and violent
search if it has not been created; - 1 means to use index only for search, and 1 means not to use index only for
violent search. The default value is 0.

• quick: By default, the PQ recall vector is calculated and refined in the search results. In order to speed up the
processing speed of the server to true, only recall can be specified, and no calculation and refined.

• vector_value: In order to reduce the network overhead, the search results contain only scalar information fields
without feature data by default, and set to true to specify that the returned results contain the original feature
data.

• online_log_level: Set “debug” to specify to print more detailed logs on the server, which is convenient for
troubleshooting in the development and test phase.

• size: Specifies the maximum number of results to return. if request address like http://router_server/\protect\T1\
textdollardb_name/\protect\T1\textdollarspace_name/_search?size=20, use the size value specified in the URL
first.

6.6 ID query

curl -XGET http://router_server/$db_name/$space_name/$id

6.6. ID query 23

http://router_server/\protect \T1\textdollar db_name/\protect \T1\textdollar space_name/_search?size=20
http://router_server/\protect \T1\textdollar db_name/\protect \T1\textdollar space_name/_search?size=20

Vearch, Release 0.1

6.7 Batch query

curl -H "content-type: application/json" -XPOST -d'
{

"query": {
"sum": [{

"field": "vector_field_name",
"feature": [0.1, 0.2]

}]
}

}
' http://router_server/$db_name/$space_name/_msearch

The difference between batch query and single query is that the batch features are spliced into a feature array in order,
and the background service will split according to the feature dimension when defining the table space structure. For
example, define 10-dimensional feature fields, query 50 features in batches, and splice features into a 500 dimensional
array in order to assign them to feature parameters. The request suffix uses “_msearch”.

6.8 Multi vector query

The definition of tablespace supports multiple feature fields, so the query can support the features of corresponding
data. Take two vectors per record as an example: define table structure fields

{
"field1": {

"type": "vector",
"dimension": 128

},
"field2": {

"type": "vector",
"dimension": 256

}
}

Field1 and field2 are vector fields, and two vectors can be specified for search criteria during query:

{
"query": {

"sum": [{
"field": "filed1",
"feature": [0.1, 0.2, 0.3, 0.4, 0.5],
"min_score": 0.9

},
{

"field": "filed2",
"feature": [0.8, 0.9],
"min_score": 0.8

}]
}

}

The results of field1 and field2 are intersected, and other parameters and request addresses are consistent with those of
ordinary queries.

24 Chapter 6. Doc Opeartion

CHAPTER 7

Effect Evaluation

Benchmarks

This document shows the experiments we do and the results we get. Here we do two series of experiments. First, we
experiment on a single node to show the recalls of the modified IVFPQ model which is based on faiss. Second, we do
experiments with Vearch cluster.

We evaluate methods with the recall at k performance measure, which is the proportion of results that contain the
ground truth nearest neighbor when returning the top k candidates (for k {1,10,100}). And we use Euclidean neighbors
as ground truth.

Note that the numbers (especially QPS) change slightly due to changes in the implementation, different machines, etc.

Getting data

We do experiments on two kind of features. One is 128-dimensional SIFT feature, the other is 512-dimensional VGG
feature.

Getting SIFT1M

To run it, please download the ANN_SIFT1M dataset from

http://corpus-texmex.irisa.fr/

and unzip it to the subdirectory sift1M.

Getting VGG1M and VGG10M

We get 1 million and other 10 million data and then use deep-learning model vgg to get their features.

Getting VGG100M , VGG500M and VGG1B

We collect billions of data and use deep-learning model vgg to get their features for cluster experiments.

Nprobe experiments

We do experiments on SIFT1M, VGG1M and VGG10M. In this experiment, nprobe {1,5,10,20,30,40,50,80,100,200}.
At the same time, we set the ncentroids as 256 and the nbytes as 32.

We use recall at 1 to show the result.

Result

25

http://corpus-texmex.irisa.fr/

Vearch, Release 0.1

As we can see, when nprobe exceeds 25, there is no obvious change of recalls. Also, when nprobe get larger,only QPS
of vgg10M get smaller, QPS of vgg1M and QPS of sift1M basically have no changes.

Ncentroids experiments

We do experiment on VGG10M. The number of centroid {64,128,256,512,1024,2048,4096,8192} and we set nprobe
as 50 considering the number of centroid becomes very large. Here we also set nbytes as 32. We use recall at 1 to
show the result.

Result

As we can see, there is no obvious change of recalls when the number of centroid get larger. But the QPS become
higher and higher as the number of centroid grows.

Nbytes experiments

We do experiment on VGG10M. The number of byte {4,8,16,32,64}. We set ncentroids as 256 and nprobe as 50. We
use recall at 1 to show the result.

Result

26 Chapter 7. Effect Evaluation

Vearch, Release 0.1

As we can see, when the number of byte grows, the recall get higher and higher, but the QPS drops obviously.

Experiments with faiss

We do experiments on SIFT1M, VGG1M and VGG10M to compare the recalls with faiss. We use some algorithm
implemented with faiss and we use Vearch to represent our algorithm.

Models

Here we show the parameters we set for used models. When the parameters in the table are empty, there are no
corresponding parameters in the models. And the parameters of links, efSearch and efConstruction are defined in faiss
of hnsw.

model ncentroids nprobe bytes of SIFT bytes of VGG links efSearch efConstruction
pq | 32 64
ivfpq |256 20 32 64
imipq 2^(2*10) 2048 32 64
opq+pq 32 64
hnsw 32 64 40
ivfhnsw 256 20 32 64 40
Vearch 256 20 32 64

Result

recalls of SIFT1M:

model recall@1 recall@10 recall@100
pq 0.6274 0.9829 0.9999
ivfpq 0.6167 0.9797 0.9960
imipq 0.6595 0.9775 0.9841
opq+pq 0.6250 0.9821 1.0000
hnsw 0.9792 0.9867 0.9867
ivfhnsw 0.9888 0.9961 0.9961
Vearch 0.8649 0.9721 0.9722

27

mailto:recall@10
mailto:recall@100

Vearch, Release 0.1

recalls of VGG1M :

model recall@1 recall@10 recall@100
pq 0.5079 0.8922 0.9930
ivfpq 0.4985 0.8792 0.9704
imipq 0.5077 0.8618 0.9248
opq+pq 0.5213 0.9105 0.9975
hnsw 0.9496 0.9550 0.9551
ivfhnsw 0.9690 0.9744 0.9745
Vearch 0.9536 0.9582 0.9585

recalls of VGG10M :

model recall@1 recall@10 recall@100
pq 0.5842 0.8980 0.9888
ivfpq 0.5913 0.8896 0.9748
imipq 0.5925 0.8878 0.9570
opq+pq 0.6126 0.9160 0.9944
hnsw 0.8877 0.9069 0.9074
ivfhnsw 0.9638 0.9839 0.9843
Vearch 0.9272 0.9464 0.9468

28 Chapter 7. Effect Evaluation

mailto:recall@10
mailto:recall@100
mailto:recall@10
mailto:recall@100

CHAPTER 8

Cluster experiments

First, we do experiments by searching on cluster only with vgg features. Then, we experiment with the vgg features
and filter the search using an integer field to compare the time consumed and QPS with the vgg features only. In the
following section, we use searching with filter or without filter to specify the experiment method mentioned earlier.
For different size of experiment data, we use different Vearch cluster. We use 3 masters, 3 routers and 5 partition
services for VGG100M. For VGG500M, we use the same size of master and router with VGG100M but 24 partition
services. We use 3 masters, 6 routers and 48 partition services to deal with the VGG1B.

Result

The growth shape of QPS is more like inverted J-shaped curve which means the growth of QPS basically have no
obvious change when average latency exceed one certain number.

29

Vearch, Release 0.1

30 Chapter 8. Cluster experiments

CHAPTER 9

Common Problem

1. Vearch’s vector search engine gamma is based on faiss. Vearch may not compile successfully when the version
of faiss is greatly changed and incompatible with the historical version.

31

	Summary
	Overall Architecture
	General Introduction
	System Features

	Installation and Use
	Compile
	Deploy

	Cluster Monitoring
	Cluster Status
	Health Status
	Port Status

	Database Operation
	List Database
	Create Database
	View Database
	Delete Database
	View Database Space

	Space Operation
	Create Space
	View Space
	Delete Space
	Modify cache size
	Get cache size

	Doc Opeartion
	Single Insertion
	Batch insertion
	Update
	Delete
	Search
	ID query
	Batch query
	Multi vector query

	Effect Evaluation
	Cluster experiments
	Common Problem

